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Abstract

The differences between plants grown in field and in controlled environments have

long been recognized. However, few studies have addressed the underlying molecular

mechanisms. To evaluate plant responses to fluctuating environments using laboratory

equipment, we developed SmartGC, a high‐performance growth chamber that

reproduces the fluctuating irradiance, temperature and humidity of field environments.

We analysed massive transcriptome data of rice plants grown under field and SmartGC

conditions to clarify the differences in plant responses to field and controlled

environments. Rice transcriptome dynamics in SmartGC mimicked those in the field,

particularly during the morning and evening but those in conventional growth chamber

conditions did not. Further analysis revealed that fluctuation of irradiance affects

transcriptome dynamics in the morning and evening, while fluctuation of temperature

affects transcriptome dynamics only in the morning. We found upregulation of genes

related to biotic and abiotic stress, and their expression was affected by environmental

factors that cannot be mimicked by SmartGC. Our results reveal fillable and unfillable

gaps in the transcriptomes of rice grown in field and controlled environments and can

accelerate the understanding of plant responses to field environments for both basic

biology and agricultural applications.
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1 | INTRODUCTION

To optimize agricultural crop productivity and understand plant

behaviour in natural environments, knowledge of plant responses to

fluctuating field environments is essential. Numerous studies conducted

in controlled environments, such as growth chambers and greenhouses,

have facilitated the understanding of plant responses to environmental

stimuli. However, such responses are sometimes different from those

in controlled environments (Annunziata et al., 2017, 2018; Dantas

et al., 2021; Matsubara, 2018; Matsuzaki et al., 2015; Nagano

et al., 2012; Poorter et al., 2016; Song et al., 2018) due to differences

between the two environments. Field environments experience daily

fluctuations and gradual changes, particularly around dawn and dusk,

whereas controlled environments usually fluctuate quickly and regularly
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between fixed (i.e., square‐wave) conditions, which are constant during

the day and night, and abruptly transition at dawn and dusk. Light

quality, such as red light to far‐red light ratio and the presence of

ultraviolet‐B light, also varies between field and controlled environ-

ments. Additionally, plants in the field experience abiotic and biotic

stresses, such as wind, precipitation, and insect and pathogen attacks.

Such factors make it difficult to apply knowledge obtained from

laboratory studies to the field studies in plant science.

To reveal plant responses to fluctuating field environments, field and

laboratory studies have attempted to address the differences between

the two settings. One approach involves transcriptome analysis of field‐

grown plants (Dantas et al., 2021; Iwayama et al., 2017; Kashima

et al., 2021; Matsuzaki et al., 2015; Nagano et al., 2012, 2019; Takehisa

& Sato, 2019; Zaidem et al., 2019). We previously developed a statistical

model that predicts the transcriptome dynamics of rice leaves in the field

using meteorological data (Nagano et al., 2012). The modelling approach

provides valuable information about plant responses to the field

environment, although the detailed mechanism still requires examination

under laboratory conditions. Another approach is to mimic the field

environment using laboratory equipment. Studies using this approach

have clarified the characteristics of photosynthesis under fluctuating light

(Alter et al., 2012; Kaiser et al., 2018; Matsubara, 2018; Niedermaier

et al., 2020; Schneider et al., 2019; Tanaka et al., 2019; Vialet‐Chabrand

et al., 2017; Yamori, 2016), successfully mimicked primary metabolism of

Arabidopsis leaves (Annunziata et al., 2017, 2018), and determined the

expression patterns of the Arabidopsis florigen gene, FLOWERING

LOCUS T (FT) (Song et al., 2018) in field environments.

Previous studies have clarified the characteristics of plant

responses to fluctuating field environments. However, a comprehen-

sive understanding of the differences between plants grown in field

and in controlled environments is still lacking. Therefore, we developed

SmartGC, a high‐performance growth chamber that can reproduce

fluctuating field environments, to compare plant responses to field and

controlled environments. By analysing massive transcriptome data of

rice plants grown under field and SmartGC conditions, we revealed

fillable and unfillable gaps in plant responses to field and controlled

environments.

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

In this study, we developed SmartGC, a high‐performance growth

chamber (Supporting Information: Figure S1a–d). SmartGC is com-

posed of two parts: a growth chamber (LPH‐240SP, Nippon Medical &

Chemical Instruments Co., Ltd.) (for controlling temperature and

relative humidity) and a Heliospectra L4A LED light source (Heliospec-

tra) (for controlling light). Both parts have been customized to be

controlled simultaneously by one computer, and they are scheduled to

function for more than 24 h. The light source can independently

control seven types of LEDs (violet to far‐red) with a 1‐s resolution,

but it does not include UV‐A and UV‐B. The spectrum of the light

source is shown in Supporting Information: Figure S2a,b. The output

value of each LED can be set to 0 or 1 in increments from 15 to 1000

sv (set value). Temperature and relative humidity were set to 15–45°C

and 50%–80%, respectively, at a 1‐min resolution. SmartGC can record

temperature and relative humidity every minute. Although the light

source can control seven types of LEDs independently, we set the

output of all LEDs to the same value for each setting.

A common japonica rice (Oryza sativa L.) cultivar, Nipponbare, was

used in all the experiments in this study. Seeds were sterilized in a 2.5%

(v/v) sodium hypochlorite solution for 30min and then soaked in water

at 30°C for 3 days. Germinated seeds were sown in a cell tray filled

with nursery soil (N:P2O5:K2O= 0.6:1.2:1.0 g/kg). Plants were grown in

SmartGC for 17 days with a 14 h photoperiod and an irradiance level of

867µmol photon m−2 s−1 (photon flux density [PFD] of 380–780 nm)

30 cm from the light source, which corresponds to the height of the

middle part of the rice leaves used for sampling, by setting an output

value of 500 sv (Figure 1a,b, Supporting Information: Figure S1b).

The daily light integral (DLI) or the number of photosynthetically active

photons (400–700 nm) accumulated in a square metre over the course

of a day, was 38mol photons m−2 day−1. Plants were then transferred to

each condition as follows (Figure 1a):

1. Field condition (FIELD). We chose a site at Ryukoku University, Otsu,

Japan (34°57′43.4″N, 135°56′22.6″E) for the experiment (Support-

ing Information: Figure S1e,f). Plants were transferred at 19:00 on 18

September 2017. During the field experiment, temperature, relative

humidity and irradiance were measured every minute (Figure 1b).

Temperature and relative humidity were measured using THMchip

thermo‐hygrometers (THM10‐TH, FUJIFILM Wako Pure Chemical

Corporation) which were set in an aspirated radiation shield (Okada &

Nakamura, 2010). Irradiance was measured using a quantum metre

(LA‐105, Nippon Medical & Chemical Instruments Co., Ltd.). As we

could not obtain irradiance from 16:00 to 17:31 on 19 September

2017 (i.e., 21–22 h and 31min after transferring plants to the field),

we regarded the change in irradiance during this time as a linear

decrease and used the calculated value of irradiance for further

experiments (Figure 1b,c). The spectrum and red (655–665 nm) to

far‐red (730–740 nm) (R:FR) ratio of irradiance is shown in Supporting

Information: Figure S2a–c, respectively. The R:FR ratio ranged from

1.1 to 1.6. The DLI was 30, 13 and 34mol photons m−2 day−1 on the

first, second and third days, respectively.

2. Fluctuating light, temperature and humidity (FL/FTH). Fluctua-

tions in irradiance, temperature and relative humidity in the FIELD

condition were simulated. Irradiance in the FIELD condition was

simulated every minute by translating irradiance to the light

source output using a calibration curve (Supporting Information:

Figure S3). We measured the PFD of the output from 15, 100,

200, 300, 400, 500, 600, 700, 800, 900, 950 and 1000 sv for each

LED and constructed a calibration curve using linear regression.

Although plants can sense light below 1 µmol photon m−2 s−1,

particularly through phytochrome A, and low light can affect gene

expression (Seaton et al., 2018; Shinomura et al., 1996), we

regarded irradiance in the FIELD with PFD < 1 as darkness and set
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(a) (b) (c)

(d) (e) (f)

(g) (i)

(h) (j)

F IGURE 1 (See caption on next page)
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the output value of the light source to zero. Since the lowest

output value for turning on the light source was 15 sv, the output

value during the day was set to 15 sv, as the irradiance in the

FIELD was lower than that in SmartGC, with an output value of

15 sv (Figure 1b, Supporting Information: Figure S4a,b). The

photoperiod was 12 h and 37min, 12 h and 31min and 12 h and

31min on the first, second and third days, respectively. In

addition, the highest output value for the light source was 1000

sv, and the output value during the day was set to 1000 sv when

the irradiance in the FIELD was higher than that at an output

value of 1000 sv in SmartGC (Figure 1b). Irradiance was measured

every minute using a quantum metre (LA‐105) without plants,

and the R:FR ratio of the irradiance was calculated (Figure 1c,

Supporting Information: Figures S2c and S5a,b). The R:FR ratio

ranged from 2.0 to 7.7. The DLI was 30, 13 and 32mol photons

m−2 day−1 on the first, second and third days, respectively. The

temperature and relative humidity in the FIELD were simulated

every 1min. The relative humidity in the FL/FTH condition was

less than 50% or more than 80%, so the humidity was set to 50%

or 80% (Figure 1b). Temperature and relative humidity were

logged every minute (Supporting Information: Figure S5c–f).

3. Constant light, temperature and humidity (CL/CTH). Irradiance,

temperature and relative humidity were kept constant during the

day and night. The time of dawn and dusk in Otsu, Shiga was that

recorded by the National Astronomical Observatory of Japan.

The photoperiod was 12 h and 16min, 12 h and 13min, and 12 h

and 11 min on the first, second and third days, respectively. Each

day, irradiance, temperature and relative humidity were set to

constant values during the day and night, which corresponded to

the average values in the field condition during the day and

night, respectively. As we could not obtain the field data 72 h

after sampling, the temperature and relative humidity after dusk

(17:55–19:00) on the third day were set to the respective

constant values at 19:00 in FIELD. The relative humidity in FIELD

was less than 50% or more than 80%, so the humidity was set to

50% or 80% (Figure 1b). Irradiance was measured every minute

using a quantum metre (LA‐105) without plants, and the R:FR

ratio of the irradiance was calculated (Figure 1c, Supporting

Information: Figures S2c and S5a,b). The R:FR ratio ranged from

3.1 to 5.2. The DLI was 33, 13 and 38mol photons m−2 day−1 on

the first, second and third days, respectively. Temperature and

relative humidity were logged every minute (Supporting Infor-

mation: Figure S4c–f).

4. Fluctuating light with constant temperature and humidity

(FL/CTH). Light was set to the values in the FL/FTH condition,

and the temperature and relative humidity were set to the values

in the CL/CTH condition.

5. Constant light with fluctuating temperature and humidity

(CL/FTH). Light was set to the same values as in the CL/CTH

condition, and the temperature and relative humidity were set to

the values of the FL/FTH condition.

After transferring the plants to each condition, they were

acclimatized for 48 h. Sampling was conducted every 2 h for 24 h

starting at 19:00 (13 times in total, Experiment_1) (Figure 1a, Supporting

Information: Figures S4 and S6, Supporting Information: Table S1).

Under each condition, the uppermost, fully expanded leaves (i.e., the

fifth leaves) were sampled from all four plants per sampling point, frozen

in liquid nitrogen and stored at −80°C for future use. At each sampling

point, sampling was completed within 5min.

Another sampling was conducted under FL/FTH, CL/CTH,

FL/CTH and CL/FTH conditions to investigate plant responses

around dawn and dusk in detail (Experiment_2). The experimental

scheme was the same as that described above, except the sampling

time‐points and the number of samples differed. Fifty‐eight to

seventy‐two hours after transferring the plants to each of the

conditions, three plants were sampled at each of the following

time‐points: 5:00, 5:30, 6:00, 6:30, 7:00, 8:00, 9:00, 10:00, 11:00,

13:00, 15:00, 16:00, 17:00, 17:30, 18:00, 18:30 and 19:00 (17 times

in total) (Figure 1a, Supporting Information: Figures S4 and S6,

Supporting Information: Table S1).

2.2 | RNA‐Seq analysis

The leaf samples were ground under cryogenic conditions using a

Multi‐Beads Shocker (Yasui Kikai). Total RNA was extracted using the

Maxwell 16 LEV Plant RNA Kit (Promega). RNA concentration was

F IGURE 1 Transcriptome dynamics of rice leaves in the field are mimicked under simulated field environments in SmartGC. (a) Experimental
design of this study. (b) Irradiance, air temperature and relative humidity in the preculture, FIELD, FL/FTH and CL/CTH conditions. The unit of
irradiance is photon flux density (PFD) defined over 380–780 nm. (c) Measured values of irradiance, air temperature and relative humidity in
FIELD, FL/FTH and CL/CTH. (d) Boxplots showing pairwise Pearson's correlation coefficients (r) of transcriptomes between FIELD and the other
conditions at each time‐point. Adjusted p‐values of Wilcoxson rank‐sum test between FIELD versus FL/FTH and FIELD versus CL/CTH,
FL/CTH and CL/FTH are shown. Each point shows the mean value of four replicates. (e) Histogram of pairwise Pearson's correlation coefficient
of expression levels of each gene between FIELD and the other conditions. (f) A bar graph showing the number of genes with r > .7 and
q‐value < 0.05 in (e). (g) and (h) Principal component analysis (PCA) of transcriptomes in (g) Experiment_1 and (h) Experiment_2. The percentages
of total variance represented by principal component 1 (PC1) and principal component 2 (PC2) are shown in parentheses. Each point shows the
mean value of the four replicates; error bars indicate the standard errors of PC1 and PC2. Points were connected by lines according to the
time‐point at each condition. Numbers within the frame indicate the start and end times. 19_2 indicates the time‐point 24 h after the start of
sampling day at 19:00. (i) and (j) Hierarchical cluster dendrograms of the transcriptomes in each condition and time‐point in (i) Experiment_1
(n = 4) and (j) Experiment_2 (n = 3). Same‐coloured panels in the dendrograms indicate the same sampling time.
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measured using the broad‐range Quant‐iT RNA Assay Kit (Thermo

Fisher Scientific). RNA (500 ng) was used as the input of each sample

for library preparation. Library preparation for RNA‐sequencing was

conducted using Lasy‐Seq (Kamitani et al., 2019) version 0.9 or 1.0

(https://sites.google.com/view/lasy-seq/; Supporting Information:

Figure S7). The library was sequenced using HiSeq. 2500 (Illumina)

at Macrogen or Takara with single‐end sequencing lengths of 50bp or

100 bp, respectively.

All obtained reads were trimmed using Trimmomatic version 0.33

(Bolger et al., 2014) using the following parameters: TOPHRED33,

ILLUMINACLIP:TruSeq. 3‐SE.fa:2:30:10, LEADING:19, TRAILING:19,

SLIDINGWINDOW:30:20, AVGQUAL:20, MINLEN:40, indicating that

reads with more than 39 nucleotides and average quality scores over

19 were reported. Then, the trimmed reads were mapped onto the

reference sequences of the IRGSP‐1.0_transcript (Kawahara et al., 2013)

and the virus reference sequences, which were composed of complete

genome sequences of 7457 viruses obtained from NCBI GenBank

(Kashima et al., 2021) using RSEM version 1.3.0 (B. Li & Deway, 2011)

and Bowtie version 1.1.2 (Langmead et al., 2009) with default

parameters.

The reads per million (rpm) were calculated using the nuclear‐

encoded gene raw count data, excluding the genes encoding rRNA,

as described by Kashima et al. (2021). In Experiments 1 and 2,

0.85–3.35 million and 1.11–4.27 million reads per sample were used

for calculating rpm, respectively (Supporting Information: Figure S7a).

A total of 12,741 genes in which the average number of reads was

>10 in all Experiment_1 samples was used for the statistical analysis

(Supporting Information: Figure S7b).

2.3 | Inference of internal time using the molecular
timetable method

We applied the molecular timetable method (Ueda et al., 2004) to the

transcriptome data of Experiment_1 to infer the internal time of each

sample, as described by Higashi et al. (2016). First, we selected time‐

indicating genes whose expression indicated periodicity and high

amplitude. To evaluate the periodicity, we prepared 1440 cosine

curves, which had different peaks (0–24 h) measured at 1‐minute

increments. We fitted the curves to the time‐course transcriptome

data of FIELD in Experiment_1 (52 total samples) and calculated

the correlation coefficient (r) to identify the best‐fitting cosine curve

(Supporting Information: Figure S8a). The peak time of the best‐

fitting curve was estimated as the peak time for each gene and was

defined as the molecular peak time. Thus, the molecular peak time

was estimated individually for each gene. Then, to analyse the

amplitude, we calculated the average gene expression and standard

deviation for each gene. The amplitude value (a) was calculated as the

standard deviation divided by the average gene expression level

(Supporting Information: Figure S8b). A total of 143 time‐indicating

genes were selected according to the cut‐off values of r= 0.935 and

a= 0.15 (Supporting Information: Table S2). The molecular peak

time of the time‐indicating genes was covered throughout the day,

which ensured the accurate estimation of internal time (Supporting

Information: Figure S8c).

We normalized the expression level of each time‐indicating gene

using the z‐score, which is defined as the value of the individual

expression level minus the average expression level, divided by the

standard deviation. We then plotted expression profiles composed of

the molecular peak time and the normalized expression level for

each sampling time (Supporting Information: Figure S8d). Finally, the

internal time was estimated using a plotted expression profile. We

prepared 1440 cosine curves (with each having 1‐min difference with

respect to preceding one) and fitted them to the expression profiles.

We identified the best‐fitting cosine curve, and the corresponding

peak time was used to indicate the estimated internal time.

To validate the accuracy of inferring the internal time using the

time‐indicating genes, we calculated the measurement noise as the

standard deviation of the difference between the real and estimated

expression of each time‐indicating gene. The measurement noise of

each gene ranged from 91% to 100% (mean ± standard deviation:

99 ± 1%), indicating that 143 time‐indicating genes were sufficient

for accurately estimating the internal time (Ueda et al., 2004).

2.4 | Determination of starch and sucrose content

Starch and sucrose content were determined as described by

Okamura et al. (2013).

2.5 | Analysis of public microarray data

We used the microarray data previously analysed by Nagano et al.

(2012). This data was available on the GEOwebsite (https://www.ncbi.

nlm.nih.gov/geo/; accession numbers: GSE36777 and GSE36595) and

had already been normalized and log‐transformed. We used 96

samples of rice (cultivar: Norin 8) grown in paddy fields that were

sampled in August 2009, 39–98 days after transplantation. We also

used 16 samples of the same rice cultivar grown in a growth chamber,

which were sampled at 2:00 and 14:00 at 30, 32, 34 and 36 days after

sowing. Details about the samples and conditions in the experiment

are described in the study by Nagano et al. (2012). The parameters of

the gene expression model in their study were obtained from FiT‐DB

(https://fitdb.dna.affrc.go.jp/).

2.6 | Detection of fungal and viral infection of rice
leaves using de novo assembly of unmapped reads to
the rice reference transcriptome

Since Lasy‐Seq (Kamitani et al., 2019) detects RNA with poly(A) tails,

unmapped reads of the rice reference genome can contain RNA of

fungi and viruses with poly(A) tails. To clarify whether the rice plants

sampled in this study were infected by fungi or viruses, we conducted

de novo assembly of unmapped reads to the rice reference genome

2414 | HASHIDA ET AL.
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(Supporting Information: Figure S9). Raw sequence reads were

merged based on the experiments and conditions of each sample.

Reads were then trimmed using Trimmomatic version 0.33 (Bolger

et al., 2014) with the parameters described above and were then

mapped to the rice reference genome using Bowtie2 with default

parameters, except setting N = 1. After extracting the unmapped

reads and removing the duplicated reads, de novo assembly was

conducted using Trinity with default parameters. After removing

redundant reads using CD‐HIT (Fu et al., 2012), 19 contigs were

identified. Each contig was annotated using BLASTn for nucleotides

(Camacho et al., 2009) (Supporting Information: Figure S9, Supporting

Information: Table S3).

2.7 | Statistical analysis

All statistical analyses were performed using R software version 3.5.3

(R core Team, 2019). Specifically, differentially expressed gene (DEG)

analysis was conducted using R package TCC version 1.20.0 (Sun

et al., 2013; Tang et al., 2015). Normalization was conducted using

iDEGES/edgeR (Robinson et al., 2010) with a false discovery rate

(FDR) of 0.1, and DEG detection was conducted using edgeR with

FDR = 0.05. Gene enrichment tests for GO and Kyoto Encyclopaedia

of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) pathways

were conducted using the R package GO.db version 3.6.0

(Carlson, 2018) and KEGG.db version 3.2.3 (Carlson, 2016), respec-

tively, as described by Nagano et al. (2019). The FDR was controlled

using Benjamini and Hochberg's method (Benjamini & Hochberg, 1995)

with FDR = 0.05. Log2 (rpm) was calculated as log2(rpm + 1). Multiple

comparison tests for starch and sucrose contents were conducted

using the R package car version 3.0.10.

3 | RESULTS

3.1 | Reproduction of environmental field
conditions with SmartGC

SmartGC can control irradiance with a 1‐second resolution and

temperature and relative humidity with a 1‐minute resolution

(Supporting Information: Figure S1a–d), enabling the reproduction

of fluctuating field environments. We grew rice plants in SmartGC for

17 days under square‐wave conditions. Subsequently, we transferred

the plants to five different treatment conditions, where they were

left to acclimate for 2 days. The leaves were sampled on the third day

(Figure 1a). First, we conducted experiments in the field (FIELD) to

measure irradiance (light, L), temperature (T) and relative humidity (H)

(Supporting Information: Figure S1e,f). We then conducted an

experiment in SmartGC simulating the environmental factors of

FIELD (fluctuating L, T and H; FL/FTH). A square‐wave condition

experiment was also conducted using SmartGC (constant L, T and H;

CL/CTH). To distinguish the effect of environmental factors on rice

transcriptomes, we also set conditions where only irradiance

(FL/CTH) or temperature and humidity (CL/FTH) were fluctuating,

while the other factors were held constant. SmartGC successfully

simulated irradiance, temperature and humidity fluctuations for FIELD,

except for simulations with high irradiance, a low R:FR ratio, and high

or low humidity due to limitations in the setting of the growth chamber

(Figure 1b,c and Supporting Information: Figures S2,S4 and S5).

3.2 | Evaluation of transcriptome similarity
between field and controlled environments

We sampled rice leaves from four biological replicates in each condition

every 2 h for 24 h (260 total samples) and conducted RNA‐Seq analysis

(Experiment_1; Figure 1a, Supporting Information: Figures S4–S6,

Supporting Information: Table S1). Sampling was conducted in the

dark from 19:00 to 5:00, and in the light from 7:00 to 17:00. Another

experiment was conducted under four controlled conditions to

investigate responses around dawn and dusk (Experiment_2; 204

samples obtained from 17 time‐points [5:00 to 19:00] with three

biological replicates). In this experiment, sampling was conducted in the

dark from 5:00 to 5:30 and from 18:30 to 19:00, and in the light from

6:00 to 17:30. In FIELD, it was after dusk (17:55) at 18:00, but the

irradiance (PFD) was above 1 µmol photon m−2 s−1. Thus, the sampling

at 18:00 was conducted in the light in FL/FTH and FL/CTH, and in the

dark in CL/CTH and CL/FTH (Supporting Information: Figure S4b). The

differences in rice plant growth among the five conditions were not

obvious; therefore, leaves at the same stage were sampled in all

conditions.

We evaluated transcriptome similarity between conditions using

correlation and principal component analysis (PCA). The pairwise

Pearson's correlation coefficient (r) for each time‐point and condition

tended to be higher for FIELD versus FL/FTH than for FIELD versus the

other conditions (Figure 1d). The number of genes with r > 0.7 and the

number of statistically significant genes by correlation (p‐value adjusted

for multiple comparison test [q‐value] < 0.05) were highest for FL/FTH

and lowest for CL/CTH (Figure 1e,f). These results indicate that FL/

FTH reproduced the rice transcriptome dynamics of FIELD better than

CL/CTH. In the Experiment_1 PCA, PC1 separated the samples

harvested in the morning from those harvested in the afternoon, and

PC2 separated those harvested in the light from those harvested in the

dark (Figure 1g and Supporting Information: Figure S10). Consequently,

samples were ordered by time, suggesting that the diurnal transcrip-

tome dynamics were similarly influenced by circadian changes under

the five conditions. Hierarchical clustering based on Pearson's

correlation coefficient separated the samples by sampling time‐points

(Figure 1i and Supporting Information: Figure S11a). However, the 9:00

CL/CTH samples were clustered with 11:00 samples of all five

conditions, whereas the 9:00 samples of the other conditions were

clustered together (Figure 1i and Supporting Information: Figure S11a).

Furthermore, 19:00_2 (24 h after the start of sampling at 19:00) CL/

CTH and CL/FTH samples were clustered with 17:00 samples of all five

conditions, whereas the 19:00_2 samples of the other conditions were

clustered together (Figure 1i and Supporting Information: Figure S11).
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These results suggest that the internal time progression of the samples

was faster around 9:00 in CL/CTH and slower around 19:00_2 in CL/

CTH and CL/FTH compared with the other conditions, reflecting the

differences in irradiance. This was also supported by the internal time

inference of transcriptome samples using the molecular timetable

method (Higashi et al., 2016; Ueda et al., 2004) (Supporting

Information: Figure S8, Supporting Information: Table S2). These results

are consistent with that of a previous study on statistical modelling with

transcriptome data (Matsuzaki et al., 2015), which showed that the

internal time progression in conventional growth chamber conditions

was faster after lights‐on and slower before lights‐off than in the field.

Experiment_2 samples were also separated by time, excluding those in

the morning, using PCA and hierarchical clustering (Figure 1h,j

and Supporting Information: Figures S11b and S12). In the Experi-

ment_2 PCA, PC1 separated the samples based on the progression of

time, and PC2 separated the samples according to the average

(a) (c)

(b) (d)

(e) (f) (g) (h)

F IGURE 2 Light affects transcriptome dynamics in the morning and evening while temperature affects them only in the morning. (a) and
(b) The number of DEGs between (a) FIELD and the other conditions at each time‐point in Experiment_1 and (b) FL/FTH and the other
conditions at each time point in Experiment_2. (c) and (d) The number of genes affected by environmental conditions at each time‐point in
(c) Experiment_1 and (d) Experiment_2. Each gene set was selected using the schemes shown in the table. DEGs between conditions that were
included and not included in each gene set are shown as T and F, respectively. LIGHT, genes affected by light; TH, genes affected by air
temperature; LTH, genes affected by light and air temperature; UNREP, genes whose expression was regulated by factor(s) other than light and
air temperature. (e)–(g) Expression of (e) LIGHT, (f) TH and (g) LTH genes at 7:00 in Experiment_1 and Experiment_2. Points indicate means, and
error bars indicate standard deviations (n = 4 and n = 3 in Experiment_1 and Experiment_2, respectively). Red arrows indicate 7:00. rpm,
reads per million. (h) Venn diagram of LIGHT genes in the morning (8:00) and evening (19:00_2). [Color figure can be viewed at
wileyonlinelibrary.com]
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irradiance of the sampling time (Figure 1h and Supporting Information:

Figure S12). Samples at 7:00 under CL/CTH were clustered with the

8:00 FL/CTH and CL/FTH samples and the 9:00 FL/FTH samples

(Figure 1j and Supporting Information: Figure S12). This time lag

between conditions continued until 11:00, suggesting that the morning

internal time progression was affected by temperature, humidity and

irradiance.

We then evaluated transcriptome similarity between conditions

using DEG analysis at each sampling time‐point. We compared FIELD

with the other conditions using DEG analysis in Experiment_1 (Supporting

Information: Table S4). DEG analysis indicates the DEGs between FIELD

and the other conditions. There tended to be fewer DEGs in FL/FTH than

in other conditions (Figure 2a). This is consistent with the results that the

rice transcriptome dynamics in FIELD were better reproduced under

FL/FTH than in the other conditions (Figure 1d–f,i). The number of DEGs

peaked at 7:00 in CL/CTH and FL/CTH, and at 19:00_2 in CL/CTH and

CL/FTH (Figure 2a). Since temperature and humidity were equal in

CL/CTH and FL/CTH, these results suggest that the difference between

FIELD and CL/CTH in the morning was mainly due to temperature and/or

humidity. In contrast, irradiance was equal for CL/CTH and CL/FTH,

suggesting that the differences between FIELD and CL/CTH in the

evening were mainly due to irradiance. Unlike at 19:00_2, no clear

differences between FIELD and CL/CTH were observed at 19:00

(Figure 2a). This may reflect the weather differences before sampling:

the second day was cloudy, while the third day was sunny (Figure 1b,c).

We investigated the overlap of DEGs at each time‐point and character-

ized genes affected by environmental conditions into four types

(Figure 2c,e–g): genes affected by light (LIGHT); genes affected by

temperature and humidity (TH); genes affected by light, temperature and

humidity (LTH); and genes whose expression in the field was not

reproduced under controlled conditions (UNREP). The number of UNREP

genes peaked at 13:00 (Figure 2c). This might reflect the high irradiance in

FIELD, which was not simulated by SmartGC (Figure 1b,c). The number of

TH genes tended to be higher in the morning, peaking at 7:00, while the

number of LIGHT genes tended to be higher in the evening, peaking at

19:00_2 (Figure 2a). Additionally, the number of LTH genes was highest

at 7:00 and second highest at 19:00_2 (Figure 2c), suggesting the

importance of morning light conditions.

The number of DEGs between FL/FTH and the other conditions

in Experiment_2 peaked in the morning and evening for CL/CTH and

CL/FTH, and only peaked in the morning for FL/CTH (Figure 2b,

Supporting Information: Table S5). The overlap of DEGs in Experi-

ment_2 showed that the number of LIGHT genes was high in the

morning and evening, while that of TH genes was high only in the

evening (Figure 2d). These results confirm the findings from PCA and

hierarchical clustering (Figure 1g–j). Interestingly, >50% of the LIGHT

genes at 8:00 and 19:00_2 overlapped (Figure 2h), suggesting that

the effect of irradiance on transcriptome dynamics was different

between the morning and evening. The number of TH genes was

higher than that of LTH and LIGHT genes from 5:00 to 6:00

(Figure 2d), indicating that temperature and humidity began affecting

the transcriptome before dawn. In contrast, the number of LTH and

LIGHT genes increased from 6:00 to 6:30, indicating that light began

affecting the transcriptome 0.5–1 h after dawn. Since the start of

dawn only differed by 10min between FL/FTH and CL/CTH

(Supporting Information: Figure S4), the gradual versus sudden

increase of irradiance, and not the difference in the timing of dawn,

caused the upregulation of LTH and LIGHT genes after dawn. This is

consistent with previous studies on Arabidopsis, and it may have

been caused by the regulation of gene expression by phytochrome A

after dawn (Seaton et al., 2018). Likewise, the number of TH genes

increased from 1 h before dusk (16:00–17:00) (Figure 2d), indicating

that a gradual versus sudden decrease of irradiance, and not the

difference in the timing of dusk, caused the increase of TH genes

before dusk. Overall, these results suggest that gradual versus

sudden changes in irradiance affect transcriptome dynamics in the

morning and evening, whereas changes in temperature and/or

humidity only affect transcriptome dynamics in the morning. The

number of DEGs between FL/FTH and the other conditions in

Experiment_2 tended to be higher than that between FIELD and the

other conditions in Experiment_1 (Figure 2a–d). This may have

resulted from fewer environmental factors affecting transcriptome in

SmartGC than in the field.

Although we could not distinguish the effects of temperature

and humidity on the transcriptome, the effect of temperature could

be greater than that of humidity (Nagano et al., 2012). Therefore, we

considered the effect of temperature or humidity as the effect of

temperature in subsequent discussions.

3.3 | Circadian clock genes respond to fluctuating
irradiance and temperature

Among the circadian clock genes (Figure 3 and Supporting

Information: Figures S13–S15), TIMING OF CAB EXPRESSION

1/PSEUDO‐RESPONSE REGULATOR 1 (TOC1/PRR1) and LUX AR-

RHYTHMO/PHYTOCLOCK 1 (LUX/PCL1) expression clearly differed

between conditions (Figure 3a). TOC1/PRR1 expression increased

from 7:00 to 9:00 in FIELD, FL/FTH, and FL/CTH, and from 5:00 to

7:00 in CL/CTH and CL/FTH. LUX/PCL1 expression increased from

13:00 to 15:00 in FIELD, FL/FTH, and FL/CTH, and from 11:00 to

13:00 in CL/CTH and CL/FTH. These results suggest that the

increases in TOC1/PRR1 expression in the morning and in LUX/PCL1

expression in the daytime were affected by irradiance. In Arabi-

dopsis, REVEILLE (RVE) genes are positive regulators of PRR5, TOC1/

PRR1, and evening complex genes (ELF3, ELF4, and LUX/PCL1) (Grey

et al., 2017). The expression of two RVE genes (Os06g0728700 and

Os02g0680700) decreased from 15:00 to 17:00 in FIELD, FL/FTH,

and FL/CTH, and from 17:00 to 19:00_2 in CL/CTH and CL/FTH,

suggesting the involvement of irradiance in their regulation

(Figure 3b and Supporting Information: Figure S15). In contrast,

expression of the other two RVE genes (Os04g0538900 and

Os02g0685200) decreased from 7:00 to 9:00 in FIELD, FL/FTH,

and CL/FTH, and from 5:00 to 7:00 in CL/CTH and FL/FTH

(Figure 3b and Supporting Information: Figure S15), suggesting that

their expression was affected by diurnal temperature changes.

RICE TRANSCRIPTOME IN FIELD AND CHAMBER | 2417

 13653040, 2022, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.14367 by C

ochrane Japan, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Nuclear‐encoded sigma factor SIG5 regulates the expression of

some plastid‐encoded genes (Noordally et al., 2013). SIG5 expres-

sion was lower in FIELD, FL/FTH and FL/CTH than in CL/CTH and

CL/FTH at 17:00 and 19:00_2 (Figure 3c). This may indicate that

plastid‐encoded gene expression responds to changes in diurnal

irradiance via SIG5. Because mRNA was reverse‐transcribed using

oligo‐dT primers in our RNA‐Seq method (Kamitani et al., 2019) and

plastid‐encoded genes do not have poly‐A tails in their mRNA, we

were unable to obtain reliable data on the expression levels of

plastid‐encoded genes from our RNA‐Seq analysis. Therefore,

further analysis of plastid‐encoded gene expression is necessary.

Overall, these results identified circadian clock genes that respond

to fluctuating irradiance and temperature. Further studies are

needed to clarify the role of individual genes in response to

fluctuating environmental conditions.

3.4 | Diurnal fluctuation of irradiance affects rice
leaf sugar metabolism

To characterize the environmentally‐affected genes, we tested for

enrichment of genes with annotations in the DEGs detected above

(Figure 4 and Supporting Information: Figure S16, Supporting

Information: Tables S6–S13). A total of 7564 and 2942 genes, which

(a)

(b) (c)

F IGURE 3 Circadian clocks under field and controlled conditions. Expression of (a) TIMING OF CAB EXPRESSION 1/PSEUDO‐RESPONSE
REGULATOR 1 (TOC1/PRR1), LUX ARRHYTHMO/PHYTOCLOCK 1 (LUX/PCL1), (b) genes encoding REVEILLE, and (c) genes encoding sigma factor
SIG5 in Experiment_1 and Experiment_2. Points indicate means, and error bars indicate standard deviations (n = 4 and n = 3 in Experiment_1 and
Experiment_2, respectively). Red arrows indicate the sampling times discussed in the manuscript. rpm, reads per million. [Color figure can be
viewed at wileyonlinelibrary.com]
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have at least one gene ontology (GO) annotation or which belong to

one KEGG pathway, respectively, were used for the enrichment test.

Genes annotated for photosynthesis (GO:0015979; KEGG pathway:

dosa00195) were significantly enriched in DEGs and LTH genes in

Experiment_1 (Figure 4), suggesting that fluctuations in irradiance

and temperature affected photosynthesis‐related gene expression.

Genes annotated for photosynthesis and photosynthesis‐antenna

proteins (KEGG pathway: dosa00196) or photosynthetic light

harvesting (GO:0009765) were significantly enriched in TH genes at

7:00–9:00 in Experiment_1 and 5:00–6:30 in Experiment_2

(Figure 4b,d and Supporting Information: Figure S16b,d). The

expression of some photosynthetic light‐harvesting genes increased

before dusk, and this increase occurred earlier for CL/CTH and

FL/CTH than for FIELD, FL/FTH and CL/FTH (Supporting Informa-

tion: Figure S17). These results indicate that photosynthetic light

harvesting‐related genes are examples of genes whose expression in

the morning is affected by gradual changes and fluctuations in

temperature. This is consistent with the gene expression model

suggested by Nagano et al. (2012). Among the 15 genes annotated

for photosynthesis‐antenna proteins or photosynthetic light

(a) (b)

(c)

(d)

F IGURE 4 Identification of gene sets affected by fluctuating environmental conditions. Heatmaps of p‐values (Fisher's exact test, two‐sided)
for significant genes with (a) and (b) a particular gene ontology (GO) and (c) and (d) a particular KEGG pathway (row) at each time and condition
(column) in (a) and (c) DEGs between FIELD and the other conditions and (b) and (d) LIGHT, TH, LTH and UNREP genes in Experiment_1. GO and
KEGG pathways that have at least one significant (adjusted p < 0.05) time‐point and condition are shown in the heatmaps. [Color figure can be
viewed at wileyonlinelibrary.com]
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harvesting, the expression of nine genes was affected by night

temperature (Supporting Information: Figure S17, Supporting Infor-

mation: Table S14).

Significant enrichment of sugar metabolism genes was

observed in the evening. Genes annotated for starch and sucrose

metabolism (KEGG pathway: dosa00500) were significantly en-

riched in DEGs in FIELD versus CL/CTH and LIGHT at 19:00_2 in

Experiment_1, and in DEGs in FL/FTH versus CL/CTH from 17:00

to 19:00, FL/FTH versus CL/FTH at 17:30–19:00, and LIGHT

genes at 17:30–19:00 in Experiment_2 (Figure 4c,d and Supporting

Information: Figure S16c,d). These are examples of genes whose

evening expression is affected by fluctuations in irradiance. In

Arabidopsis, differences in irradiance between sinusoidal and

square‐wave conditions affect diurnal changes in carbohydrate

content (Annunziata et al., 2017, 2018). To clarify the effect of

environmental conditions on rice leaf carbohydrate metabolism,

we measured the starch and sugar contents in Experiment_1

leaves. Carbohydrate content, especially of sucrose, reflected the

differences in diurnal changes of irradiance between conditions

(Figures 1b,c and 5a,b, Supporting Information: Table S15). In

CL/CTH and CL/FTH, starch and sucrose content decreased from

dusk to dawn and then increased from dawn to dusk. For sucrose

content, a delayed increase at dawn and an early decrease before

dusk were observed in FIELD, FL/FTH and FL/CTH, which is

consistent with previous results on Arabidopsis (Annunziata

et al., 2017, 2018). Delayed increase in Arabidopsis leaf starch at

dawn was also observed under sinusoidal conditions with

irradiance, but this trend was less prominent in rice. This reflects

leaf carbohydrate composition; rice mainly stores sucrose, whereas

Arabidopsis mainly stores starch (Okamura et al., 2017). Although

the diurnal trends of changes in starch and sucrose content were

similar between FIELD, FL/FTH and CL/FTH, starch and sucrose

(a) (b)

(c) (d) (e)

F IGURE 5 Coordination of leaf sugar metabolism and diurnal change in irradiance. (a) and (b), Diurnal change in (a) starch and (b) sucrose
content in leaves of each condition in Experiment_1. Results of multiple comparison analyses between conditions using the Tukey–Kramer
method are shown in Supporting Information: Table S15. (c)–(e) Expression of genes encoding (c) large and small subunits of adenosine
diphosphate‐glucose pyrophosphorylase (AGPL3 and AGPS1, respectively), (d) tonoplast‐localized sucrose transporter (SUT2), and (e) trehalose
phosphate synthase (TPS1) in Experiment_1 and Experiment_2. Points indicate means, and error bars indicate standard deviations (n = 4 and
n = 3 in Experiment_1 and Experiment_2, respectively). Red arrows indicate the sampling times discussed in the manuscript. FW, fresh weight;
rpm, reads per million. [Color figure can be viewed at wileyonlinelibrary.com]
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content tended to be higher in FIELD than in FL/FTH and FL/CTH.

This may have been due to the inability of SmartGC to simulate

high irradiance during sunny conditions at daytime (Figure 1b,c) or

to the differences in the light source (sunlight in FIELD vs. LED in

SmartGC).

Accordingly, with the differences in leaf carbohydrate content, sugar

metabolism genes clearly differed between the conditions. Expression of

AGPL3 and AGPS1, which encode adenosine diphosphate‐glucose

pyrophosphorylase (AGP), a key enzyme in starch synthesis (Okamura

et al., 2017), tended to be higher in FIELD than in the other conditions

(Figure 5c). Evening expression of other starch synthesis genes, such as

starch synthases (SSI, SSIIb and SSIIIb) and granule‐bound starch synthase

(GBSSII), exhibited similar trends in the changes to irradiance; expression

decreased earlier in FIELD, FL/FTH and FL/CTH than in CL/CTH and

CL/FTH (Supporting Information: Figure S18a). This trend was also

observed for sugar metabolism and signalling‐related gene expression

(Figure 5d,e, Supporting Information: Figures S18b and S19). For

example, expression of sugar transporter (SUT2), which regulates carbon

export from source leaves to sink organs in rice (Eom et al., 2011),

exhibited a similar trend (Figure 5d). Furthermore, genes encoding

trehalose 6‐phosphate synthase and trehalose 6‐phosphate phospha-

tase, which belong to the trehalose biosynthesis pathway and play a

significant role in sugar signalling (Figueroa & Lunn, 2016; Paul

et al., 2018), exhibited similar trends in the leaf sucrose content

(Figure 5e, Supporting Information: Figure S19). Overall, these results

indicate that differences in diurnal changes in irradiance between FIELD

and CL/CTH conditions affected the carbon status and expression of

sugar metabolism genes in rice leaves, especially in the evening.

3.5 | Field‐specific expression of genes related to
biotic and abiotic stress

Gene enrichment tests for DEGs showed gene expression specific to

FIELD. Genes annotated for ribosomes (GO:0005840; KEGG pathway:

dosa03010) were significantly enriched in DEGs in FIELD versus

FL/FTH, CL/CTH and FL/CTH at 13:00 and 15:00 (Figure 4a).

Ribosome‐annotated gene expression was significantly higher in FIELD

than in the other conditions (Figure 6a). These results suggest that

ribosome‐related gene expression was upregulated by unevaluated

environmental factor(s) that differed between field and SmartGC

experiments. Considering that ribosomal gene expression responds to

various biotic and abiotic stresses (Moin et al., 2016), the upregulation

of ribosome‐related genes was probably a response to stressors

specific to the field environment. Genes annotated for chromatin

(GO:0000785) were significantly enriched in DEGs between FIELD

and the other conditions, especially in the morning, indicating the

difference in chromatin state dynamics induced by sunlight and LEDs

(Figure 4a,b and Supporting Information: Figure S20).

Genes annotated for secondary metabolites (KEGG pathway:

dosa01110), phenylpropanoid biosynthesis (KEGG pathway: dosa

00940), and flavonoid biosynthesis (KEGG pathway: dosa00941)

(which were significantly enriched in DEGs in FIELD compared

to other conditions), and LTH and UNREP genes (Figure 4c,d).

Phenylpropanoid biosynthesis‐related gene expression (Figure 6b)

was significantly upregulated in FIELD compared to the other

conditions, mainly from 9:00 to 15:00, except for a gene encoding

4‐coumarate:coenzyme A ligase (Os02g0177600), which was upregu-

lated at night (Figure 6c). Since phenylpropanoid biosynthesis‐related

gene expression is induced by various biotic and abiotic stresses (Dixon

& Paiva, 1995; Vogt, 2010), these results suggest that the upregulation

of these genes was a response to field environment stresses.

To investigate field‐specific gene expression, we focused on the

transcriptome differences between FIELD and FL/FTH. We calculated

the mean value of each gene's expression at all time points and

extracted genes whose expression was 2× higher or lower in FIELD

than in FL/FTH. We also extracted genes whose expression

significantly differed between FIELD and FL/FTH at one or more time

points. A total of 159 and 78 genes were identified as upregulated and

downregulated, respectively, in FIELD (Figure 6d, Supporting Informa-

tion: Tables S16 and S17). Phenylpropanoid biosynthesis‐related genes

were observed among the highly expressed genes in FIELD (Support-

ing Information: Table S16). We also found several genes encoding

pathogenesis‐related (PR) proteins (Figure 6e, Supporting Information:

Table S16), which are induced by pathogen attack and are a key

component of systemic acquired resistance (SAR) (Backer et al., 2019).

NONEXPRESSOR OF PATHOGENESIS‐RELATED GENES 1 (NPR1) is

important for establishing SAR and indirectly activating PR gene

expression (Backer et al., 2019). However, NPR1 and the other NPR

genes were not upregulated in FIELD (Supporting Information:

Figure S21), suggesting that PR gene upregulation was independent

of NPR genes. Terpene synthesis‐related genes, which defend against

herbivore‐ and pathogen‐caused tissue damage (Yoshitomi et al., 2016),

were also upregulated in FIELD (Supporting Information: Figure S22,

Supporting Information: Table S17). However, we did not observe any

signs of herbivory or herbivorous insects. In addition, herbivory‐

induced early defence signalling genes (Ye et al., 2019) were neither

upregulated nor downregulated, except for WRKY30 downregulation

in FIELD (Supporting Information: Figure S23). Therefore, PR and

terpene synthesis‐related gene upregulation was likely independent of

the effect of insects.

Although no pathogen infection symptoms were observed,

upregulation of PR and terpene synthesis‐related genes may have

resulted from pathogen infection. Therefore, we attempted to

detect viral and fungal infections from RNA‐Seq data using our

previously reported pipeline (Kamitani et al., 2016) (Supporting

Information: Figure S24) and de novo assembly of unmapped reads

to the rice reference genome (Supporting Information: Figure S9).

The number of reads of viruses (Moriyama et al., 1995) and fungi

with poly(A) tails was not specific for FIELD nor correlated with PR

gene expression (Figure 6f and Supporting Information: Figures S24

and S25, Supporting Information: Table S3). Although we cannot

exclude the possibility of infection by bacteria or viruses without

poly(A) tails, these results suggest that upregulation of PR and

terpene synthase genes in FIELD was a response to physical

environmental factor(s) specific to the field.
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(a) (b)

(c)

(d)

(f)(e)

F IGURE 6 (See caption on next page)
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To determine whether field‐specific gene expression is also

present in paddy‐field rice, we re‐analysed the microarray data of rice

leaves sampled from a paddy field and a growth chamber, which had

been previously analysed by Nagano et al. (2012). Observations

regarding up‐ or downregulation of genes in FIELD were consistent

with the previous study (Nagano et al., 2012) (Figure 6d, Supporting

Information: Tables S18 and S19), suggesting that the field‐specific

gene expression information we obtained is also applicable to paddy‐

field rice.

4 | DISCUSSION

Although differences between plants grown in the field and controlled

environments are well known (Poorter et al., 2016), few studies have

explored the underlying molecular mechanisms for these. Here, we

established an experimental scheme for using laboratory equipment to

evaluate plant responses to fluctuating environments. We revealed

diurnal transcriptome dynamics in both environments and their fillable

and unfillable gaps. Our results complement those that model plant

transcriptome responses in field environments (Matsuzaki et al., 2015;

Nagano et al., 2012). Gradual changes in irradiance affected tran-

scriptome dynamics in the morning and evening, whereas temperature

changes only had an effect in the morning (Figure 2). Accordingly, our

statistical model suggested that the number of genes whose expression

was affected by a time‐specific temperature was the lowest from noon

to dusk (Nagano et al., 2012). The number of genes whose expression

was affected by time‐specific daily irradiance was higher during

daytime and the highest around noon. There was no difference in the

number of genes expressed in the morning and evening. As the

plant circadian clock is dawn‐dominant (Edwards et al., 2010;

Flis et al., 2016, 2019), the fact that both morning irradiance and

temperature affect transcriptome dynamics is likely due to circadian

entrainment by irradiance and temperature. Conversely, this suggests

that the effect of evening irradiance is independent of circadian

regulation. Accordingly, less than a half of the morning and evening

LIGHT genes overlapped (Figure 3f). Since sugar metabolism gene

expression corresponded to decreased sucrose content in the evening

(Figure 5 and Supporting Information: Figures S16 and S17) and diurnal

changes in sugar status affect transcriptome dynamics independent of

the circadian clock (Cookson et al., 2016; Flis et al., 2016), the effect of

evening irradiance potentially depends on differences in carbon status

between conditions. We cannot exclude the possibility that morning

light and temperature cause additional effects independent of the

circadian clock.

We found that the expression of RVE genes responded to gradual

changes in irradiance and temperature (Figure 3b and Supporting

Information: Figure S15a). Since TOC1/PRR1 and LUX/PCL1 are

positively regulated by RVE in Arabidopsis (Grey et al., 2017) and the

expression of two RVE genes (Os06g0728700 and Os02g0680700),

TOC1/PRR1, and LUX/PCL1 were affected by a gradual change in

irradiance (Figure 3a), the two RVE genes might play a role in the

regulation of TOC1/PRR1 and LUX/PCL1 in rice. The expression

pattern suggests that Os06g0728700 might serve as an activator of

TOC1/PRR1. This is consistent with a previous study suggesting that

the role of RVE genes as TOC1/PRR1 activators is conserved in rice

(Toda et al., 2019). In contrast, Os02g0680700 might function as a

repressor of LUX/PCL1 rather than an activator (Figure 3b). This

would suggest that the positive regulation of LUX/PCL1 by RVE is not

conserved in rice. A previous study suggested that RVE responded to

low carbon status in Arabidopsis (Moraes et al., 2019). Thus, the

expression of the two RVE genes might be affected by differences in

carbon status derived from either gradual or sudden changes in

irradiance. The expression patterns of the other two RVE genes

(Os04g0538900 and Os02g0685200) were affected by temperature

(Figure 3b and Supporting Information: Figure S15a). However, the

expression of core circadian clock genes including TOC1/PRR1 did

not show clear difference between different temperature conditions

(Figure 3a and Supporting Information: Figure S13). As some RVE

genes may be involved in the circadian clock output pathway of

Arabidopsis (Rawat et al., 2009; Zhang et al., 2007), the impact of the

temperature‐affected RVE genes on circadian regulation might be

different from that of the RVE genes affected by irradiance. Further

studies are needed to clarify the role of RVE in circadian oscillator

regulation through responses of rice to fluctuating environmental

stimuli.

Field plants experience various biotic and abiotic stresses, such

as insect and pathogen attack, wind and UV light, which were not

simulated by SmartGC. In FIELD conditions, we found upregulated

genes related to ribosomes, phenylpropanoid biosynthesis and

F IGURE 6 Field‐specific expression of genes related to biotic and abiotic stress. (a) Expression of ribosome‐related genes is upregulated in
FIELD. Boxplot showing the normalized expression levels (z‐score) of genes with annotations for ribosomes (GO:0005840) between FIELD and
the other conditions at 13:00 in Experiment 1. Adjusted p‐values of Wilcoxon rank‐sum test between FIELD and the other conditions are shown.
(b) Outline of the phenylpropanoid biosynthesis pathway. Enzymes catalysing each reaction are shown in red. CHI, chalcone isomerase; CHS,
chalcone synthase; C4H, cinnamate 4‐hydroxylase; F3H, flavanone 3‐hydroxylase; F3'H, flavonoid 3‐hydroxylase; 4CL, 4‐coumarate:coenzyme
A ligase; PAL, L‐phenylalanine ammonia‐lyase. (c) Expression of genes related to the phenylpropanoid biosynthesis pathway. Points indicate
means, and error bars indicate standard deviations (n = 4). (d) Scatter plot showing the differences in the mean expression value between FIELD
and FL/FTH in this study and between paddy field and the growth chamber in Nagano et al. (2012). Genes whose mean value of expression was
more than 2.0 times higher or lower in both experiments and significantly different between FIELD and FL/FTH at one or more time points are
shown as red and blue points, respectively. (e) PR genes whose expression was upregulated in FIELD. Points indicate means, and error bars
indicate standard deviations (n = 4). (f) Scatter plot showing the relationship between the expression of Alphaendornavirus (Moriyama et al., 1995)
and PR genes, which was upregulated in FIELD. [Color figure can be viewed at wileyonlinelibrary.com]
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pathogen defence (Figure 6), all of which are responses to biotic and

abiotic stress (Ali et al., 2018; Dixon & Paiva, 1995; Moin et al., 2016;

Vogt, 2010). This indicates that plants cope with the field environ-

ment by upregulating stress‐responsive genes, despite the less

stressful field environment compared to the stress‐treatment

experiments. Alongside the finding that these genes are also

upregulated in paddy fields (Figure 6f), our study suggests that these

genes can be targets for rice productivity improvement in the field.

In addition to the presence or absence of UV light, factors related

to light quality that were not simulated by SmartGC (Supporting

Information: Figure S2), such as the R:FR ratio and the proportion of

blue light, may have caused the differences between the plants grown

in the field and with SmartGC. In this study, the R:FR ratio in SmartGC

was higher and more fluctuating than that in FIELD (Supporting

Information: Figure S2). This may have affected phytochrome signalling

and phytochrome‐dependent processes such as the circadian clock and

leaf development (Soy et al., 2016). In Arabidopsis, a higher R:FR ratio

between field and controlled environments has been shown to cause

differences in the expression patterns of FT genes, and these

differences involved phytochrome A (Song et al., 2018). Inactivation

of phytochrome B by far‐red light at the end of the day affects leaf

development (Romanowski et al., 2021) and phytochrome B also acts

as a temperature sensor (Jung et al., 2016; Legris et al., 2016).

Therefore, a high R:FR ratio could affect transcriptome dynamics in a

wide range of biological processes. Furthermore, the proportion of blue

light also affects transcriptome dynamics (Pedmale et al., 2016). Since

the proportion of blue light affects phenylpropanoid synthesis

(Huché‐Thélier et al., 2016), it is possible that higher expression levels

of genes annotated for phenylpropanoid biosynthesis result from

differences in the proportion of blue light, as well as other field‐specific

environmental factors (Figure 6). It is necessary to further explore the

effects of the R:FR ratio and the proportion of blue light on

transcriptome dynamics in the future.

The differences between sunlight in the field and LED light in

controlled conditions caused differences in the transcriptome and sugar

metabolism between the treatment groups. The starch and sucrose

contents in the leaves were higher in FIELD than in the other conditions

(Figure 5a,b). One reason for this is the inability of SmartGC to simulate

the high irradiance that occurs during daytime (Figure 1b,c). It is also

possible that the light source affected the irradiance received by the

whole plant. Since the light source of SmartGC was located above the

rice plants (Supporting Information: Figure S1), the irradiance received

on the side of the rice plants was much less than that received at the top

of the plants. In contrast, rice plants grown in the field received

irradiance on the sides as well as the top because sunlight includes both

diffused and direct light. Furthermore, the irradiance from LED light

received by plants in SmartGC decreases with increasing distance from

the light source, while that from sunlight does not (Niinemets &

Keenan, 2012; Poorter et al., 2012). Furthermore, diffuse light reaches

the lower part of the plant canopy more efficiently than does direct light

(Li et al., 2014). Collectively, these factors mean that the total irradiance

received by the plants in SmartGC is less than that received in the field.

Considering that the carbohydrate content in CL/CTH and CL/FTH was

lower than that in FIELD (Figure 5a,b), the differences in irradiance

received by the whole plant likely had a greater effect on carbohydrates

than the differences in irradiance during daytime. This might also explain

the differences between FIELD and FL/FTH at midday. The number of

UNREP genes peaked at 13:00 in Experiment_1 (Figure 2c). Because the

photoreceptors were completely saturated by the irradiance at this time

of the day, this result might not be related to light signalling. However,

the difference in irradiance received by the whole plant between FIELD

and FL/FTH might explain the differences observed in the transcrip-

tome, as these may have occurred due to differences in carbon

metabolism. As GO terms and KEGG pathways were not significantly

enriched in UNREP genes at 13:00 (Figure 4b,d), further studies are

required to clarify the mechanisms underlying the differences between

FIELD and FL/FTH at midday.

Although the starch and sucrose contents were higher in FIELD

than in the other conditions, their trends in FIELD were simulated in

FL/FTH (Figure 5a,b). These trends were consistent with previous

results on Arabidopsis (Annunziata et al., 2017). In Arabidopsis, starch

accumulation in leaves during the day depends on the environmental

conditions and the length of the day (Moraes et al., 2019; Stitt &

Zeeman, 2012). Similarly, the starch and sucrose content in rice leaves

is affected by the length of the day (Okamura et al., 2017). Future

studies should thus examine the effects of fluctuating irradiance on

starch and sugar metabolism under different photoperiods.

It is possible that the preculture environmental conditions and

the acclimation duration affected the transcriptome dynamics in this

study. The photoperiods were shortened from 14 h in the preculture

to 12 h and 11–37min in each growth condition (Figure 1a). The

effect of shortening the photoperiod was buffered in our experi-

mental scheme because we grew plants for 2 days before sampling to

acclimate the rice plants to each condition. However, we cannot rule

out the possibility that shortening the photoperiod may have affected

the transcriptomes. Extending the acclimation period might better

buffer the effects of preculture environmental conditions on the

transcriptomes. The evaluation of the effect of these factors on

transcriptomes will contribute to the improvement of the experi-

mental scheme established in this study.

We demonstrated the utility of SmartGC for understanding plant

responses to fluctuating environments; however, SmartGC cannot

completely reproduce field environments, and unfillable gaps remain

between plants grown in the field and those grown in SmartGC. To

overcome these gaps, it may be practical to control the light quality

by increasing the output of far‐red light to decrease the R:FR ratio in

SmartGC, and by also including UV‐A and UV‐B light. Furthermore, it

would be beneficial to clarify simpler conditions than those used in

this study to simulate field environments, with the goal of mimicking

field‐grown plants more easily and cost‐effectively than SmartGC.

Our results suggest that it is important to include gradual changes in

the environmental factors of irradiance and temperature to accu-

rately mimic the conditions of plants grown in the field, although this

may depend on the target organs or the objectives of the experiment.

However, to clarify the most critical factors for simulating plants

grown in the field, we need to further evaluate plant responses to
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environmental factors such as humidity, light quality, and light

fluctuation, which are important yet thus far insufficiently examined

features of the field environment. It will also be important to

determine the extent to which conditions can be appropriately

simplified by quantifying the effects of simplification on plants using

SmartGC and transcriptome analysis.

SmartGC is especially useful for difficult‐to‐conduct field

experiments, such as those using genetically modified plants, radio-

isotopes, or rare environmental conditions. Moreover, SmartGC can

be used to predict the effects of future climate change on plants by

allowing the evaluation of plants grown in a simulated environment.

In addition, SmartGC can contribute to improvements in modelling

plant transcriptome dynamics. Since transcriptome models can be

used to predict the environmental responses of plants, much effort

has been made to improve the models. For example, Urquiza‐García

and Millar (2021) introduced absolute units of transcription

(Flis et al., 2015) to the mathematical model of the circadian clock.

Models predicting plant transcriptomes in the field from training data

obtained from controlled environments will be improved by using

data obtained from the simulated field environment of SmartGC

because the plant transcriptome training data will be more similar

to field data than would data obtained from plants grown in a

conventional growth chamber. Furthermore, statistical models that

use data obtained from paddy fields as training data have low

predictive power under environments that rarely occur in the field

(Nagano et al., 2012). Since SmartGC can simulate rare environmental

conditions in the field, incorporating transcriptome data obtained

from plants grown in SmartGC will improve these models. Further

studies utilizing SmartGC are needed to bridge the gap between field

and laboratory studies and to facilitate a comprehensive under-

standing of plant responses to field environments.
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